博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
大数据学习资源最全版本(收藏)
阅读量:5730 次
发布时间:2019-06-18

本文共 13901 字,大约阅读时间需要 46 分钟。

资源列表:

  关系数据库管理系统(RDBMS)

  框架

  分布式编程

  分布式文件系统

  文件数据模型

  Key -Map 数据模型

  键-值数据模型

  图形数据模型

  NewSQL数据库

  列式数据库

  时间序列数据库

  类SQL处理

  数据摄取

  服务编程

  调度

  机器学习

  基准测试

  安全性

  系统部署

  应用程序

  搜索引擎与框架

  MySQL的分支和演化

  PostgreSQL的分支和演化

  Memcached的分支和演化

  嵌入式数据库

  商业智能

  数据可视化

  物联网和传感器

  文章

  论文

  视频

有一句话叫做三人行必有我师,其实做为一个开发者,有一个学习的氛围

跟一个交流圈子特别重要这是一个我的大数据交流学习群531629188

不管你是小白还是大牛欢迎入驻,正在求职的也可以加入

,大家一起交流学习,话糙理不糙,互相学习,共同进步,一起加油吧。

关系数据库管理系统RDBMS

:世界最流行的开源数据库;

:世界最先进的开源数据库;

:对象-关系型数据库管理系统。

框架

:分布式处理架构,结合了 MapReduce(并行处理)、YARN(作业调度)和HDFS(分布式文件系统);

:高吞吐量实时流处理框架。

分布式编程

:最初在AddThis上开发的分布式数据处理和存储系统;

:用在Hadoop MapReduce v1上运行Spark;

:为统一的模型以及一套用于定义和执行数据处理工作流的特定SDK语言;

:一个简单的Java API,用于执行在普通的MapReduce实现时比较单调的连接、数据聚合等任务;

:由LinkedIn开发的针对Hadoop and 和Pig的用户定义的函数集合;

:具有高性能的执行时间和自动程序优化;

:内存中的数据模型和持久性框架;

:BSP(整体同步并行)计算框架;

:在集群上使用并行、分布式算法处理大数据集的编程模型;

:Hadoop中,用于处理数据分析程序的高级查询语言;

:用来简化和统一低层大数据系统的保留性评估执行框架;

:S4中流处理与实现的框架;

:内存集群计算框架;

:流处理框架,同时是Spark的一部分;

:Twitter流处理框架,也可用于YARN;

:基于Kafka和YARN的流处理框架;

:基于YARN,用于执行任务中的复杂DAG(有向无环图);

:基于YARN的抽象概念,用于减少开发分布式应用程序的复杂度;

:数据处理和查询库;

:在MapReduce之上的高性能、自定义数据仓库;

:在Hadoop上的数据管理/分析框架;

:用于Clojure的MapReduce库;

:可选择的MapReduce范例;

:为实时引擎,用于以尽可能畅通的方式、最小的开支和对性能最小的影响,实现分布式、异步、实时的内存大数据计算;

:为Hadoop做优化处理,从而消除单点故障;

:MapReduce框架;

:分布式内存数据存储;

:创建数据管道,以帮助其分析框架;

:为MapReduce,用于编译成Apache Pig;

:由Nokia开发的MapReduc获取、转换和分析数据;

:MapReduce框架;

:容错流处理框架;

:用于处理结构化、半结构化和非结构化数据工作的声明性编程语言;

:为一组库、工具、实例和文档集,用于使在Hadoop的生态系统上建立系统更加容易;

:用于大数据集的实时e框架;

:分布式云计算;

:异步任务执行系统;

:用于Hadoop的Python MapReduce和HDFS API;

:多租户分布式测度处理系统;

:通用集群计算框架;

:用于计算基于不同时间窗口的事件流的活动,并找到最活跃的一个;

:易于使用的用于分批处理和流计算的平台,通过Scala、 Akka和Play所建;

:基于Cascading,用于Map Reduce工作的Scala库;

:在Twitter上使用Scalding和Storm串流MapReduce;

:Twitter上的时间序列聚合器。

分布式文件系统

:在多台机器上存储大型文件的方式;

:以前是FhGFS,并行分布式文件系统;

:设计的软件存储平台;

:分布式文件系统;

:对象存储系统;

:分布式文件系统(GFS2);

:分布式文件系统;

:可扩展的、高度可用的存储;

:兼容GGFS、Hadoop内存的文件系统;

:高性能分布式文件系统;

:开源分布式文件系统;

:向外扩展的附网存储(Network-attached Storage)文件系统;

:简单的、高度可扩展的分布式文件系统;

:以可靠的存储速率在跨集群框架上文件共享;

:分布式云存储系统;

文件数据模型

:商用的面向对象数据库管理系统;

:是一个开源的大规模可扩展的数据存储,需要零管理模式;

:Facebook的Paxos算法,类似于NoSQL数据库;

:基于Hadoop的面向文档的数据存储;

:可横向扩展的面向文档的NoSQL数据存储;

:模式不可知的企业版NoSQL数据库技术;

:面向文档的数据库系统;

:一个事务性的,开源文档数据库;

:支持连接查询和群组依据等查询的文档型数据库。

Key Map 数据模型

注意:业内存在一些术语混乱,有两个不同的东西都叫做“列式数据库”。这里列出的有一些是围绕“key-map”数据模型而建的分布式、持续型数据库,其中所有的数据都有(可能综合了)键,并与映射中的键-值对相关联。在一些系统中,多个这样的值映射可以与键相关联,并且这些映射被称为“列族”(具有映射值的键被称为“列”)。

另一组也可称为“列式数据库”的技术因其存储数据的方式而有别于前一组,它在磁盘上或在存储器中——而不是以传统方式,即所有既定键的键值都相邻着、逐行存储。这些系统也彼此相邻来存储所有列值,但是要得到给定列的所有值却不需要以前那么繁复的工作。

前一组在这里被称为“key map数据模型”,这两者和之间的界限是相当模糊的。后者对数据模型有更多的存储格式,可在中列出。若想了解更多关于这两种模型的区分,可阅读Daniel Abadi的博客:。

:内置在Hadoop上的分布式键/值存储;

:由BigTable授权,面向列的分布式数据存储;

:由BigTable授权,面向列的分布式数据存储;

:Facebook所开发的HBase的衍化品;

:面向列的分布式数据存储;

:为完全管理型的无模式数据库,用于存储在BigTable上非关系型数据;

:由BigTable授权,面向列的分布式数据存储;

:通过MySQL的接口访问,并使用大规模并行处理进行并行查询;

:用于HBase处理;

:Twitter的实时、多租户分布式数据库。

键-值数据模型

:支持NoSQL的闪存优化,数据存储在内存。开源,“’C’(不是Java或Erlang)中的服务器代码可精确地调整从而避免上下文切换和内存拷贝”。

:分布式键/值存储,Dynamo论文的实现;

:为替代Redis的协议兼容的服务器;

:专门研究Hadoop中数据导出的分布式数据库;

:分布式时间序列数据库;

:适用于存储在时间序列中的传感器数据;

:简单的持久性数据存储,拥有低延迟和高吞吐量;

:分布式键/值存储系统;

:Oracle公司开发的分布式键值数据库;

:内存中的键值数据存储;

:分散式数据存储;

:Twitter开发的异步键值存储的库;

:一个高效的NoSQL数据库和Lua应用服务器;

:由Google Spanner和HBase授权,Rust提供技术支持的分布式键值数据库;

:可复制、共享的键-值存储,能提供多行原子写入。

图形数据模型

:基于Hadoop的Pregel实现;

:可实现Pregel,为Spark的一部分;

:多层模型分布式数据库;

:一个可扩展的、分布式、低时延、高吞吐量的图形数据库,旨在为Google生产水平规模和吞吐量提供足够的低延迟,用于TB级的结构化数据的实时用户查询;

:TAO是facebook广泛用来存储和服务于社交图形的分布式数据存储;

:GCHQ中的Gaffer是一个易于存储大规模图形的框架,其中节点和边缘都有统计数据;

:开源图形数据库;

:图形处理框架;

:核心C ++ GraphLab API和建立在GraphLab API之上的高性能机器学习和数据挖掘工具包的集合;

:Spark中的弹性分布式图形系统;

:图形追踪语言;

:以RDF为中心的Map / Reduce框架;

:在Hadoop上构建大规模图形的工具;

:用于在GPU上大规模并行图形处理;

:完全用Java写入的图形数据库;

:文档和图形数据库;

:大型图形处理框架;

:建于Cassandra的分布式图形数据库;

:分布式图形数据库。

NewSQL数据库

:由商业支持,开源的SQL关系数据库管理系统;

:基于PostgreSQL的数据仓库服务;

:面向统计数值的SQL数据库;

:通过分区和复制横向扩展PostgreSQL;

:可扩展、地址可复制、交易型的数据库;

:旨在产生可扩展、灵活的智能应用的分布式数据库;

:由F1授意的分布式数据库;

:建立在Spanner上的分布式SQL数据库;

:全球性的分布式半关系型数据库;

:是一个实验性主存并行数据库管理系统,用于联机事务处理(OLTP)应用的优化;

:基于Percolator,HBase的线性可扩展多行多表交易库;

:MySQL/MariaDB的NoSQL插件;

:无限可扩展的RDBMS;

:内存中的SQL数据库,其中有优化的闪存列存储;

:SQL / ACID兼容的分布式数据库;

:内存中具有持久性和可恢复性的关系型数据库管理系统;

:内存中低延时的分布式SQL数据存储,可为内存列表数据提供SQL接口,在HDFS中较持久化;

:是在内存中面向列的关系型数据库管理系统;

:分布式实时半结构化的数据库;

:用于行为数据的灵活、高性能分析的数据库;

:用于文件和数据库同步的开源软件;

:为GPU内存数据库,也为大数据分析和可视化平台;

:TiDB是分布式SQL数据库,基于谷歌F1的设计灵感;

:自称为最快的内存数据库。

列式数据库

注意:请在阅读相关注释。

:解释什么是列存储以及何时会需要用到它;

:面向列的分析型数据库;

:面向列的DBMS;

:列存储数据库;

:Hadoop的列存储格式;

:专门设计的、专用的分析数据仓库,类似于传统的基于行的工具,提供了一个列式工具;

:用来管理大规模、快速增长的大量数据,当用于数据仓库时,能够提供非常快的查询性能;

:谷歌的云产品,由其在Dremel的创始工作提供支持;

:亚马逊的云产品,它也是基于柱状数据存储后端。

时间序列数据库

:使用MongoDB来存储时间序列数据;

:在HBase之上的分布式时间序列数据库,它包括内置的Rule Engine、数据预测和可视化;

:基于Cassandra和Elasticsearch的可扩展的时间序列数据库;

:分布式时间序列数据库;

:类似于OpenTSDB但会考虑到Cassandra;

:在HBase上的分布式时间序列数据库;

:一种时间序列数据库和服务监测系统;

:一种基于Apache Cassandra的时间序列数据库。

SQL处理

:高性能交互式的SQL,可访问所有的Hadoop数据;

:由Dremel授意的交互式分析框架;

:Hadoop的表格和存储管理层;

:Hadoop的类SQL数据仓库系统;

:一种框架,可允许高效的查询翻译,其中包括异构性及联合性数据的查询;

:Apache Phoenix 是 HBase 的 SQL 驱动;

:由Dremel授意的交互式分析框架;

:Cascading中的类SQL查询语言;

:用于大数据集的完整的SQL查询工具;

:分布式SQL查询工具;

:交互式分析框架,Dremel的实现;

:Hadoop的类SQL的数据仓库系统;

:用于存储大规模PB级结构化和半结构化数据的数据库;

:用于Spark和Shark的查询优化框架;

:使用Spark操作结构化数据;

:一个全功能的Hadoop上的SQL RDBMS,并带有ACID事务;

:用于Hive的交互式查询;

:Hadoop的分布式数据仓库系统;

:为企业级的SQL-on-HBase针对大数据的事务或业务工作负载的解决方案。

数据摄取

:大规模数据流的实时处理;

:数据采集系统;

:管理大量日志数据的服务;

:分布式发布-订阅消息系统;

:在Hadoop和结构化的数据存储区之间传送数据的工具;

:帮助 Solr、HBase和HDFS完成ETL的框架;

:流日志数据聚合器;

:采集事件和日志的工具;

:实时连接多个数据流的分布式计算机系统,具有高可扩展性和低延迟性;

:开源流处理软件系统;

:用Hadoop连接不同数据源的框架;

:分布式消息队列系统;

:对数据库更改捕获的事件流;

:压缩已分类整型数组的程序包;

:日志聚合器和仪表板;

:用于管理事件和日志的工具;

:像基于Chukwa 的Storm和Samza一样的日志聚合器;

:是实现Kafka日志持久性的服务;

:LinkedIn的通用数据摄取框架;

:是一种数据存储略图,使用概率性数据结构来处理计数、略图等相关的问题;

:连续大数据采集的基础设施,可简单地使用IDE。

服务编程

:JVM中分布性、容错事件驱动应用程序的运行时间;

:数据序列化系统;

:Apache ZooKeeper的Java库;

:在任何OSGi框架之上运行的OSGi运行时间;

:构建二进制协议的框架;

:流程管理集中式服务;

:一种松耦合分布式系统锁服务;

:集群管理器;

:消息传递框架;

:服务发现和协调的分散化解决方案;

:一种构建批处理作业的复杂管道的Python包,它能够处理依赖性解析、工作流管理、可视化、故障处理、命令行一体化等等问题;

:数据摄取、实时分析、批量处理和数据导出的分布式、可扩展系统;

:LZO压缩数据的工作库;

:JVM的异步网络堆栈。

调度

:在Apache Mesos之上运行的服务调度程序;

:数据管理框架;

:工作流作业调度程序;

:分布式容错调度;

:批处理工作流作业调度;

:Hadoop作业敏捷调度的Scala DSL;

:调度平台;

:一个以编程方式编写、调度和监控工作流的平台。

机器学习

:Hadoop的机器学习库;

:JavaScript中的神经网络;

:实时大规模机器学习;

:Cascading的机器学习库;

:Javascript中的机器学习,在浏览器中训练卷积神经网络(或普通网络);

:Ruby中灵活、可扩展的机器学习;

:支持多种先进算法的机器学习框架,同时支持类的标准化和处理数据;

:机器学习文本分类;

:Scalding中可扩展的机器学习;

:Google中的大规模机器学习系统;

:Python的机器学习平台,包括ML工具包、数据工程和部署工具的广泛集合;

:Hadoop统计性的机器学习和数学运行时间;

:用于BDAS堆栈的分布式机器学习库;

:针对iOS和Mac OS X的快速多层感知神经网络库;

:使文本挖掘更为容易,从文本中提取分类数据;

:智能计算的Numenta平台,它是一个启发大脑的机器智力平台,基于皮质学习算法的精准的生物神经网络;

:建于Hadoop、Mahout和Cascading上的机器学习服务器;

:分布式流媒体机器学习框架;

:scikit-learn为Python中的机器学习;

:Spark中一些常用的机器学习(ML)功能的实现;

:微软和雅虎发起的学习系统;

:机器学习软件套件;

:CPU和加速GPU的机器学习库。

基准测试

:测试Hadoop性能的微基准;

:现实大数据工作负载基准测试;

:Hadoop基准测试套件;

:MapReduce应用的基准测试套件;

:雅虎工程师团队的Hadoop集群基准测试。

安全性

:Hadoop集群安全访问的单点;

:存储在Hadoop的数据安全模块。

系统部署

:Hadoop管理的运作框架;

:Hadoop生态系统的部署框架;

:集群管理框架;

:集群管理器;

:一种YARN应用,用来部署YARN中现有的分布式应用程序;

:运行云服务的库集;

:集群管理器;

:用于简化应用程序部署和管理的库;

:基于Groovy语言,和Apache BigTop类似;

:和Hadoop进行交互的Web应用程序;

:多数据中心复制系统;

:作业调度和监控系统;

:作业调度和监控系统;

:可在YARN上部署HBase集群的应用;

:用于长期运行服务的Mesos框架。

应用程序

:使用Scala、Spark和Parquet处理的下一代web分析;

:基于HBase,实时采集和分析数据的框架;

:开源网络爬虫;

:用于NASA科学档案中数据的捕获、处理和共享;

:内容分析工具包;

:时间序列监测和报警平台;

:基于Node.js和MongoDB,开源的手机和网络分析平台;

:运行、规划、共享和部署模型——没有任何基础设施;

:基于Eclipse的报告系统;

:开源的事件分析平台;

:建于Kafka上的异步消息代理;

:在Hadoop’s MapReduce上执行图像处理任务的API;

:Hadoop的Splunk分析;

:大规模分析平台;

:RDBMS的用于数据分析的数据处理库;

:来自eBay​​的开源分布式分析工具;

:Pivotal HD / HAWQ和PostgreSQL中的R;

:为自动缩放Hadoop集群,内置的数据连接器;

:用于数据科学和大数据分析的云平台;

:用于实时运营分析的分布式内存数据存储,提供建立在Spark单一集成集群中的数据流分析、OLTP(联机事务处理)和OLAP(联机分析处理);

:企业级网络和事件分析,由Hadoop、Kinesis、Redshift 和Postgres提供技术支持;

:Spark的R前端;

:用于机器生成的数据的分析;

:基于云的分析仪,用于分析机器生成的数据;

:用于YARN、Hadoop、HBASE、Hive、HCatalog和Pig的统一开源环境;

:利用大数据(OS X app)的实例查询工具。

搜索引擎与框架

:搜索引擎库;

:用于Apache Lucene的搜索平台;

:基于Apache Lucene的搜索和分析引擎;

:为免费增值的健壮性web应用,用于探索、筛选、分析、搜索和导出来自网络的大规模数据集;

:社交图形搜索平台;

:连续索引系统;

:连续索引系统;

:大型搜索索引;

:为Percolator的实现,HBase的一部分;

:快速、轻松地搜索存储在HBase的任何内容;

:完全由Java编写的分面搜索的实现,为Apache Lucene的延伸;

:为一个一个灵活的软件库,使得局部、无序、实时预输入的搜索实现了快速发展;

:LinkedIn搜索架构;

:是用Java编写的实时搜索/索引系统;

:全文搜索引擎

MySQL的分支和演化

:亚马逊云的MySQL数据库;

:MySQL的6.0的演化;

:谷歌云的MySQL数据库;

:MySQL的增强版嵌入式替代品;

:使用NDB集群存储引擎的MySQL实现;

:MySQL的增强版嵌入式替代品;

:MySQL的高性能代理;

:用于MySQL和 MariaDB的存储引擎;

:运行MySQL时面临类似挑战的几家公司,它们的工程师之间的合作。

PostgreSQL的分支和演化

– multi-peta-byte database / MPP derived by PostgreSQL.

:MapReduce和DBMS的混合体;

:高性能数据仓库设备;

:基于PostgreSQL,可扩展的开源数据库集群;

:完全建立在PostgreSQL内部的开源推荐引擎;

:开源MPP数据库系统,只针对数据仓库和数据集市的应用程序;

:PostgreSQL可以推导多字节P比特数据库/MPP。

Memcached的分支和演化

:闪存的键/值缓存;

:Memcache的分支;

:Memcached和Redis的快速、轻型代理;

:闪存的键/值缓存;

:Memcache的分支。

嵌入式数据库

:Pervasive Software公司开发的ACID兼容的DBMS,在应用程序中嵌入了优化;

:为键/值数据提供一个高性能的嵌入式数据库的一个软件库;

:Erlang LSM BTree存储;

:谷歌写的一个快速键-值存储库,它提供了从字符串键到字符串值的有序映射;

:Symas开发的超快、超紧凑的键-值嵌入的式数据存储;

:基于性LevelDB,用于快速存储的嵌入式持续性键-值存储。

商业智能

:商业智能云平台;

:精益业务智能平台,用于可视化和探索数据;

:基于云的自助服务商业智能工具;

:功能强大的商业智能套件;

:定制的商业智能平台;

:商业智能软件和平台;

:商业智能、移动智能和网络应用软件平台;

:商业智能平台;

:商业智能和分析平台;

:开源的分析平台;

:开源商业智能平台;

:商业智能平台;

:大数据分析;

 :交互式大数据分析。

数据可视化

:用于PrestoDB的网页UI;

:利用网络工作者和jQuery的图形可视化库;

:对存储在Kibana中Solr. Port的日志和时戳数据进行可视化;

:一个功能强大的Python交互式可视化库,它针对要展示的现代web浏览器,旨在为D3.js风格的新奇的图形提供优雅简洁的设计,同时在大规模数据或流数据集中,通过高性能交互性来表达这种能力;

:基于D3可重复使用的图表库;

:开源或免费增值的虚拟主机,用于带有强大的前端编辑功能和API的地理空间数据库;

:只带Img标签的反应灵敏、兼容Retina的图表;

:开源的HTML5图表可视化效果;

:另一个开源HTML5图表可视化效果;

:JavaScript库,用于在浏览器中探索多元大数据集,用Dc.js和D3.js.效果很好;

:用于时间序列可视化的JavaScript库;

:用于可视化复杂网络的JavaScript库;

:维度图表,和Crossfilter一起使用,通过D3.js呈现出来,它比较擅长连接图表/附加的元数据,从而徘徊在D3的事件附近;

:操作文件的JavaScript库;

:从可重复使用的图表和组件构成复杂的、数据驱动的可视化;

:一组相当强大的可重用的图表,还有D3.js的样式;

:百度企业场景图表;

:动态HTML5可视化;

:写SQL查询,返回SVG图表,而不是表;

:针对IOT和其他Web混搭的开源实时仪表盘构建;

:屡获殊荣的开源平台,可视化和操纵大型图形和网络连接,有点像Photoshop,但是针对于图表,适用于Windows和Mac OS X;

:简单的图表API;

:石墨仪表板前端、编辑器和图形组合器;

:可扩展的实时图表;

:简单而灵活的图表API;

:为交互式计算提供丰富的架构;

:可视化日志和时间标记数据;

:Python绘图;

:建立在D3之上的库,针对时间序列数据进行最优化;

:d3.js的图表组件;

:渐进式SVG条形图,折线和饼图;

:易于使用的Web服务,它允许快速创建从热图到直方图等复杂的图表,使用图表Plotly的在线电子表格上传数据进行创建和设计;

:支持plotly的开源JavaScript图形库;

:简单但功能强大的库,纯粹利用JavaScript和HTML构建数据应用;

:查询和可视化数据的开源平台;

:针对R的Web应用程序框架;

:JavaScript库,专门用于图形绘制;

:一个可视化语法;

:一个笔记本式的协作数据分析;

:用于大数据的JavaScript图表库。

物联网和传感器

:基于云的传感器分析;

:物联网平台;

:数据流网络;

:ThingWorx 是让企业快速创建和运行互联应用程序平台;

:IFTTT 是一个被称为 “网络自动化神器” 的创新型互联网服务,它的全称是 If this then that,意思是“如果这样,那么就那样”;

:Evrythng则是一款真正意义上的大众物联网平台,使得身边的很多产品变得智能化。

文章推荐

(较)- Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison;

()- Redshift, Hive, Shark, Impala and Stiger/Tez的基准;

() – 电子表格的继承者应该是大数据。

论文

2015 – 2016

Facebook– One Trillion Edges: Graph Processing at Facebook-Scale.(一兆边:Facebook规模的图像处理)

2013 – 2014

Stanford - Mining of Massive Datasets.(海量数据集挖掘)

AMPLab– Presto: Distributed Machine Learning and Graph Processing with Sparse Matrices. (Presto: 稀疏矩阵的分布式机器学习和图像处理)

AMPLab– MLbase: A Distributed Machine-learning System. (MLbase:分布式机器学习系统)

AMPLab - Shark: SQL and Rich Analytics at Scale. (Shark: 大规模的SQL 和丰富的分析)

- AMPLab -  GraphX: A Resilient Distributed Graph System on Spark. (GraphX:基于Spark的弹性分布式图计算系统)

- Google– HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm. (HyperLogLog实践:一个艺术形态的基数估算算法)

Microsoft - Scalable Progressive Analytics on Big Data in the Cloud.(云端大数据的可扩展性渐进分析)

- Metamarkets - Druid: A Real-time Analytical Data Store. (Druid:实时分析数据存储)

Google– Online, Asynchronous Schema Change in F1.(F1中在线、异步模式的转变)

- Google - F1: A Distributed SQL Database That Scales. (F1: 分布式SQL数据库)

Google– MillWheel: Fault-Tolerant Stream Processing at Internet Scale.(MillWheel: 互联网规模下的容错流处理)

Facebook - Scuba: Diving into Data at Facebook. (Scuba: 深入Facebook的数据世界)

Facebook– Unicorn: A System for Searching the Social Graph. (Unicorn: 一种搜索社交图的系统)

- Facebook - Scaling Memcache at Facebook. (Facebook 对 Memcache 伸缩性的增强)

2011 – 2012

Twitter– The Unified Logging Infrastructure for Data Analytics at Twitter. (Twitter数据分析的统一日志基础结构)

AMPLab–Blink and It’s Done: Interactive Queries on Very Large Data. (Blink及其完成:超大规模数据的交互式查询)

AMPLab–Fast and Interactive Analytics over Hadoop Data with Spark. (Spark上 Hadoop数据的快速交互式分析)

AMPLab–Shark: Fast Data Analysis Using Coarse-grained Distributed Memory. (Shark:使用粗粒度的分布式内存快速数据分析)

Microsoft–Paxos Replicated State Machines as the Basis of a High-Performance Data Store. (Paxos的复制状态机——高性能数据存储的基础)

Microsoft–Paxos Made Parallel. (Paxos算法实现并行)

AMPLab– BlinkDB:BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data.(超大规模数据中有限误差与有界响应时间的查询)

Google–Processing a trillion cells per mouse click.(每次点击处理一兆个单元格)

Google–Spanner: Google’s Globally-Distributed Database.(Spanner:谷歌的全球分布式数据库)

AMPLab–Scarlett: Coping with Skewed Popularity Content in MapReduce Clusters.(Scarlett:应对MapReduce集群中的偏向性内容)

AMPLab–Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.(Mesos:数据中心中细粒度资源共享的平台)

Google–Megastore: Providing Scalable, Highly Available Storage for Interactive Services.(Megastore:为交互式服务提供可扩展,高度可用的存储)

2001 – 2010

Facebook - Finding a needle in Haystack: Facebook’s photo storage.(探究Haystack中的细微之处: Facebook图片存储)

AMPLab -Spark: Cluster Computing with Working Sets.(Spark:工作组上的集群计算)

Google– Storage Architecture and Challenges.(存储架构与挑战)

Google - Pregel: A System for Large-Scale Graph Processing.(Pregel: 一种大型图形处理系统)

Google - Large-scale Incremental Processing Using Distributed Transactions and Notifications base of Percolator and Caffeine.(使用基于Percolator 和 Caffeine平台分布式事务和通知的大规模增量处理)

Google– Dremel: Interactive Analysis of Web-Scale Datasets.(Dremel: Web规模数据集的交互分析)

Yahoo -S4: Distributed Stream Computing Platform.(S4:分布式流计算平台)

– HadoopDB:An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.(混合MapReduce和DBMS技术用于分析工作负载的的架构)

AMPLab– Chukwa: A large-scale monitoring system.(Chukwa: 大型监控系统)

Amazon - Dynamo: Amazon’s Highly Available Key-value Store.(Dynamo: 亚马逊的高可用的关键价值存储)

Google– The Chubby lock service for loosely-coupled distributed systems.(面向松散耦合的分布式系统的锁服务)

Google– Bigtable: A Distributed Storage System for Structured Data.(Bigtable: 结构化数据的分布式存储系统)

Google - MapReduce: Simplied Data Processing on Large Clusters.(MapReduce: 大型集群上简化数据处理)

- Google - The Google File System.(谷歌文件系统)

视频

数据可视化

  数据可视化之美

的数据可视化设计

  冰桶挑战的数据可视化

转载地址:http://hdvwx.baihongyu.com/

你可能感兴趣的文章
连接数据库——java
查看>>
拥在怀里
查看>>
chm文件打开,有目录无内容
查看>>
whereis、find、which、locate的区别
查看>>
TRUNK
查看>>
一点不懂到小白的linux系统运维经历分享
查看>>
MDT 2013 从入门到精通之软件自动化部署设置
查看>>
桌面支持--打不开网页上的pdf附件解决办法(ie-tools-compatibility)
查看>>
桌面支持--outlook取消收件规则1
查看>>
nagios监控windows 改了NSclient++默认端口 注意事项
查看>>
儿呀,娘想做你家的一条狗
查看>>
干货 | JAVA代码引起的NATIVE野指针问题(上)
查看>>
POI getDataFormat() 格式对照
查看>>
Project build error: Non-resolvable import POM
查看>>
数据类型
查看>>
Python 中的进程、线程、协程、同步、异步、回调
查看>>
swoft速学~redis引入
查看>>
LTS
查看>>
sublime插件自用
查看>>
Mysql客户端工具可以连接,但是代码访问就会报错
查看>>